

wavelength, λ (nm)

 $\theta = VB \ l \rightarrow$ Faraday rotation, θ measurement using lock-in detection (PSD) Lock-in amplifiers (LIAs) record an input signal as RMS volts. It can be shown that the rotation, in radians, induced by a modulating magnetic field, follows from the relations^{1,2,3}

$$\theta = \frac{1}{2} \sin^{-1} \left(\frac{V_{AC}}{V_{DC}} \right) \sim \frac{V_{AC}}{2V_{DC}}$$

which are valid for the small rotations occurring in the UNCP-MO apparatus. The Verdet constant is extracted using measured quantities defined by a measured AC voltage signal, V_{AC} , a measured DC voltage signal, V_{DC} ; both of these utilizing a lock-in amplifier. The magnetic flux density B, which is a function of the suppled current, I is obtained from the appropriate solenoid calibration along the sample of interest.

Introduction to the UNCP Magneto-Optical Facility W.D. Brandon

Department of Chemistry and Physics University of North Carolina - Pembroke

ratio = R/Aux = V_{AC}/V_{dc} , θ - phase], - signal outputs for further processing - 2 signal processing 2: SW-850-Science Workshop 850 interface and PC with Capstone software

Data Analysis Utilizing Various Theories, via nonlinear curve fitting, characterizes the dispersion of the Verdet constant for samples of interest.

 $|\mathsf{SG}^4 \rightarrow V = \frac{\pi}{\lambda} \left(a + \frac{b}{\lambda^2 - \lambda_0^2} \right)$ $|\mathsf{BHL}^{5} \rightarrow nV = a \left\{ \frac{1}{b} \left[(1-b)^{-\frac{1}{2}} - (1+b)^{-\frac{1}{2}} \right] - 1 \right\}$ $\left| \mathsf{KLN}^{6} \rightarrow nV = a \left\{ \frac{1}{b} \left[\left(1 - b \right)^{-\frac{1}{2}} - \left(1 + b \right)^{-\frac{1}{2}} \right] - \frac{4}{b^{2}} \left[2 - \left(1 - b \right)^{-\frac{1}{2}} \right] \right\} \right\}$

SG⁴ $\rightarrow a, b$ are fitting parameters, and λ_0 is the "mean resonance wavelength" obtained from the dispersion of the refractive index of the sample of interest. BHL⁵ $\rightarrow a, b$ are fitting parameters ($b = \lambda_g / \lambda$), *n* is the refractive index KLN⁶ $\rightarrow a, b$ are fitting parameters ($b = \lambda_g / \lambda$), *n* is the refractive index Interestingly, an energy gap can be calculated from the fitting parameter, $b = \lambda_g / \lambda$ using the BHL and KLN theories according to $E_g = hc / \lambda_g$ (units: eV)

UNCP-MO Apparatus - Experimental Arrangement (above figure): LD-laser diodes with BA-beam attenuators, M-turning mirrors, LCLVliquid crystal light valve, L-lens, P-crystal polarizer, A&B-aperture and baffle arrangement, PD-photodetector, Am-ammeter, Vm-voltmeter.

signal processing 1: Lock-in amplifier: SRS830-LIA [inputs: Aux-V_{dc} (avg. sig.), R- V_{AC} (PSD sig.), outputs: (1) - AC voltage & ref frequency,

$$-b^{\frac{1}{2}} - (1+b^{-\frac{1}{2}}]$$

1 - Jain, A. Kumar, J. Zhou, F. Li, L. A simple experiment for determining Verdet constants using alternating current magnetic fields. Am. J. Physics. 1999 67, 714-717. 2 – Briggs, Peterson, Liquid cell Faraday modulator. Am. J. Physics. 1993 61, 186-187. 3 – V.K. Valev, J. Wouters, and T. Verbiest, Precise Measurements of Faraday rotation using ac magnetic fields. Am. J. Physics. 2008 76, 626-629. 4 – G. Westenberger, H.J. Hoffman, W.W. Jochs, and G. Przybilla, Schott Glaswerk, *The Verdet constant and its dispersion in optical glasses*. SPIE (1991) 1535 5 – I.M. Boswarva, R.E. Howard, and A.B. Lidiard, *Faraday effect in semiconductors*, Proc. Roy. Soc., A269, 125 (1962) 6 – J. Kolodziejzcak, B. Lax, Y. Nishina, Semiclassical dispersion theory of interband magneto-optical effects, Phys. Rev. **128**, 2655 (1962) 7 – LD Didactic GmbH, Faraday effect: Determining Verdet's constant for flint glass as a function of the wavelength. Physics Leaflets. P5.4.6.1 8 – S.Y. Kim, Y.H. Won, and H.N. Kim, Measurement of the Faraday effect of a few optical glasses using a direct polarimetric method. J. of appl. Phys. 1990 7026, 67

Initial Testing (Figure to the left).

Verdet constant of F2 glass reported by four different sources. Our data (red circles), shown with SG fit (red line), is in **excellent agreement** with the Schott Glaswerke⁴ group (blue line). The exact values for the Verdet constant were not reported by that group – only the fitting parameters were provided, from which the blue curve was generated. It appears that the Verdet constants reported by Leybold⁷ are too high, whereas those reported by Kim, et.al.⁸ are, for the most part, too low.